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Abstract

We present a two-dimensional, well-balanced, central-upwind scheme for approximating
solutions of the shallow water equations in the presence of a stationary bottom topography
on triangular meshes.

Our starting point is the recent central scheme of Kurganov and Petrova (KP) for
approximating solutions of conservation laws on triangular meshes. In order to extend this
scheme from systems of conservation laws to systems of balance laws one has to find an
appropriate discretization of the source terms. We first show that for general triangulations
there is no discretization of the source terms that corresponds to a well-balanced form of
the KP scheme. We then derive a new variant of a central scheme that can be balanced on
triangular meches,

We note in passing that it is straightforward to extend the KP scheme to general un-
structured conformal meshes. This extension allows us to recover our previous well-balanced
scheme on Cartesian grids. We conclude with several simulations, verifying the second-order

accuracy of our scheme as well as its well-balanced properties.

Key words. Shallow water equations, central schemes, balance laws, unstructured grids.
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1 Introduction

We consider & flow in & two=dimensional channel with a bottom elevation given by B(Z), where
T = (z,y). Let H(Z,t) represent the fluid depth above the bottom, and @(Z,t) = (u(Z, 1), v(Z, 1))
be the fluid velocity. The top surface at any time ¢ is denoted by w(Z,t) = B(Z) + H(Z, t).

The shallow water equations, introduced by Saint-Venant in [22], are commonly used to model
flows in rivers or coastal areas. When written in terms of the top surface w and the momentum
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(Hu, Hu) these equations are of the form

wy + (Hu) + (Hv)y =0,

(Hu)2 ( B) L+ {(Hu)_(%v)]y —4(w— B)B,,

0+ [ )

(Hv), + [(T)_(fé”)] + [ffﬁ’); + %(w - B)QJ = —g(w— B)B,.

This choice of variables is particularly suitable for dealing with stationary steady-state solutions
(see [12, 21] for details). For simplicity we fix the gravitational constant, g, from now on to be
=1.

In this work we are interested in approximating solutions of (1.1) on triangular meshes. Our
goal is to investigate how to adapt the semi-discrete central schemes on triangular meshes that
were recently introduced by Kurganov and Petrova in [14] to this problem. We are interested
in deriving a discretization of the source terms in (1.1) that preserves stationary steady-state
solutions, as such solutions play an important role in the dynamics of (1.1).

Central schemes for conservation laws have become popular in recent years as a tool for ap-
proximating solutions for multi-dimensional systems of hyperbolic conservation laws. Like other
Godunov-type schemes, central schemes are based on a three-step procedure: a reconstruction
step in which an interpolant is reconstructed from previously computed cell-averages; an evolu-
tion step in which this interpolant is evolved exactly in time according to the equations; and a
projection step in which the solution is projected back to cell-averages. When compared with
other methods, central schemes are particularly appealing since they do not require any Riemann
solvers and systems can be solved component-wise.

A first-order prototype of central schemes is the Lax-Friedrichs scheme [6]. A second-order
extension is due to Nessyahu and Tadmor [19]. Extensions to two dimensions are due to Armin-
jon, Jiang and Tadmor [1, 11}. By estimating bounds on the local speeds of propagation of
information from discontinuities, it is possible to pass to the semi-discrete limit (see [13, 15] and
the references therein). There are several extensions of central schemes to unstructured grids.
A fully discrete method is due to Arminjon et al. [2]; a recent semi-discrete scheme was pro-
posed by Kurganov and Petrova in [14]. Balanced Central schemes for shallow water equations
on Cartesian grids are due to Russo in the fully-discrete framework [21] (see also [18]) and to
Kurganov and Levy in the semi-discrete framework [12].

There are many approaches to approximating solutions of (1.1). We refer, e.g. to [3, 4, 5, 7,
9, 16, 17, 20] and the references therein. Our goal in this paper is to show that balancing is also
possible with central schemes. We would like to emphasize that this is the first time i which
the balancing issues are treated for central schemes on unstructured grids.

The paper is organized as follows. We start in Section 2 with a brief overview of the KP
central scheme on triangular meshes. We note that this scheme is not limited to triangular
meshes and it can be equally well applied to general unstructured grids. We also make the
necessary adjustments to incorporate source terms into the scheme. We proceed in Section 3
with the discretization of the cell-averages of the source terms for the shallow-water equations.
is to find a discretization such that the scheme will preserve stationary steadyv states,
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BALANCED SCHEMES FOR THE SHALLOW WATER EQUATIONS 3

i.e. zero velocities and a flat surface. We show that on general unstructured meshes, there is no
discretization of the source terms in the shallow water equations that provide a well-balanced
form of the KP scheme. We then proceed by showing how to modify the original scheme in
such a way that it is possible to obtain a well-balanced discretization of the source terms. We
conclude in Section 4 with numerical examples that demonstrate the accuracy of our scheme as
well as its well-balanced property.

Acknowledgment: The work of D. Levy was supported in part by the National Science Foun-
dation under Career Grant No. DMS-0133511.

2 Central Schemes for Balance Laws on Unstructured
Grids

We consider the two-dimensional balance law,

TN

ur + f(u)s + g(u)y = S(u, z,y, 1), (1)

'subject to the initial data, u(z,y,0) = up(z,y). We are interested in approximating solutions
of (2.1) that are computed in terms of cell averages on a fixed unstructured conformal grid. To
simplify this exposition we first consider the scalar case. The scheme that is described below
can be easily extended component-wise to systems of balance laws. We will make this obvious
extension later on when dealing with the specific problem of the system of shallow water equations
(1.1).

We focus our attention on the central scheme on triangular meshes that was recently derived
n [14]. We briefly overview the derivation of this scheme in the setup of conservation laws of the
form

w + fu)z + glu), = 0. (2.2)

We assume a conformal triangulation of the domain consisting of cells T} of area |T;|. The
neighboring cells to T} are denoted by Tj, k = 1,2, 3, while the edge that is joint between Tj
and T} is denoted by E; and is assumed to be of length h;z. We also denote the outward unit
normal to 7} on the k-th edge as nx, and denote the midpoint of E;; as My (see Fig. 2.1).

We assume that the cell averages on all the cells {T;} are known at time t",

i
TGl _
and reconstruct a piecewise-polynomial

@z, y) = Y uFz, v)x(z,y). (2.4)
J

Here uj(z,y) is a two-dimensional polynomial that is yet to be determined an
characteristic function of the cell 7;. To simplify the notations we omit the tim

u:(r. 1), We also denote by .. (7 2) the nolynomial that is reconstructed in th
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Figure 2.1: The triangular grid

Discontinuities in the interpolant u; along the edges of Tj propagate with a maximal inward
velocity aj}, and a maximal outward velocity agjf. These velocities can be estimated (for convex

fluxes) as

an (M) = —min{[J(u; (M) - ), Ml (wie(Mjie)) - ], 0, (2.5)
aSy (M) max{ Ay [ (u;(Mje)} - i, Aw T (wie(Mx)) - ge], 03,

fl

where J (u; (M;;)) is the Jacobian of the flux F = (f, g) evaluated at M) and Ay < ... < Ay are
its N eigenvalues. These local speeds of propagation are then used to determine evolution points
that are away from the propagating discontinuities. An exact evolution of the reconstruction at
these evolution points is followed by an intermediate piecewise polynomial reconstruction and
finally projected back onto the original cells, providing the cell-averages at the next time-step
#7*!. Further details can be found in [14].

A semi-discrete scheme is then obtained at the limit

R
gt = - 7 2.
Gt T a0 AE (26)

Most of the terms on the RHS of (2.6) vanish in the limit as At — 0. The only quantity that
has to be determined is a quadrature rule for the integrals of the flux functions over the edges
of the cells. If we assume a Gaussian quadrature with m nodes

/ ola)dr ~ zjjcsm,

which is scaled to hy;, and denote the quadrature points on Ej as G, the KP scheme for
triangular meshes is

da] 1 - hjk = in S out S ~
T T Z T 1 jout ch [(%kF(ujk(ij) + a5k (U‘j(GJ‘kD " Tk (2.7)
T P S S —
= anast (unlGi) —w(G)]
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where F' = (f,g). If the fluxes are integrated with a midpoint quadrature (as suggested in [14])
and we use the notation ugy’ == ujx (Mjx), wy = u; (M), Fig := F(uly), and Fg := F(ujy),
the semi-discrete scheme (2 7) becomes

d’a 7 out out m out out
—c# - lTIZ _x_a°“t (@5 F5E" + a5 Fz) - mje — eyt (ug — )] - (2:8)

A basic observation that will be used below is that the semi-discrete scheme (2.8) is valid for
any conformal grid, not necessarily triangular. All that one has to do is to make the suitable
adjustments in the notations (e.g. |7}| being the area of the cell T} regardless of the shape of
that cell) and replace the sum over the three edges of the triangle by a sum over the N; edges
of each cell 7;. When approximating solutions to balance laws of the form (2.1) the scheme has

one additional term due to the source term S(u,z,y,t), i.e

du 1 & Rk
j out out in in _out ou! in Qo
— () = II l A W [(a ij T a; FM) Mk — 5505k ( 'J/ct - u]k)] + Sj(t)- (2-9>
7k g
Here
_ 1 N .
S;j~=— | S(u,Z,t)dZ, (2.10)
[T5] Jr,

is a discretization of the cell-average of the source term that should be obtained with an ap-

propriate quadrature. It is the discretization of (2.10) that serves as the topic for the next

section.

3 A Well-Balanced Scheme

In this section we present a scheme for approximating the solution of (1.1) which is balanced
via a discretized average of the source terms. In Section 3.1 we show that the KP scheme
(2.9) cannot be balanced using a straightforward discretization of the source terms on general
conformal unstructured meshes. In Section 3.2 we present a new scheme based on (2.7), which
does allow such balance on general conformal triangular meshes.

3.1 Balancing the KP scheme

Our goal now is to look for a discretization of the source term (2.10) such that the scheme (2.9)
will preserve stationary steady-state solutions. Hence, we assume zero velocities, # = v = 0, and

a constant surface, i.e. w = Const.
Since the first equation in (1.1) is homogeneous, we start by considering the second equation.

Similar analysis applies to the third equation. We are therefore looking for a discretization of
the average of the source term

o~
o
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e

—fwr— BYR
LW 20,



6 S. BrysoN AND D. LeEVY

over the cell T;. The velocities are zero and therefore the only non-zero component of the flux
n(1.1)is
1 2
f= §(w - B)~. (3.2)
This means that in order for the scheme (2.9) to preserve stationary steady-state solutions, the

average of the source term (3.1) over the cell T; has to be discretized such that for f given in
(3.2),

) |T|Z oy (R ) maes] + 55 (33)

Here nji . is the component of the normal n;x in the z-direction.
The eigenvalues of the Jacobian of the system (1. 1) are ud+/w — B and u, which are +v/w — B
and 0 in the case of zero velocities. If we assume that w is constant and that the point values of

B are known, the one-sided velocities satisfy a%, = a3y’. Under these assumptions the condition
(3.3) can be rewritten as
N;

5 ‘le ]LK for+ fn )n,-k,z] - Z‘é’ [(w— Bjp)? njra] (3.4)

where Bjk =B (Mjk).
We now assume a discretization of the cell-average of the source (3.1) of the form

N; A
—> gm(w— By)D, (3.5)

where D ~ B,, and g;i are yet to be determined. To simplify the notations we denote my =
hjxnjk - It is easy to check that S"2% my = 0 and hence in order for the representation (3.5) to
be consistent with (3.4) we must have
N;
L > ity meBie(Bik — 2w) (3.6)
N, . :
2|73 > kl1 Gix(w — Bjy)

Since D in (3.6) should not be a function of w we are seeking constants ay such that

N
kaBk (Bx — 2w) [Z g5(w — By } {Z akBkJ : (3.7)

k=1

D=

where for simplicity we omit the obvious j-dependence from all the notations. Eq. (3.7) can be
rewritten as
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Figure 3.1: An admissible triangular mesh

The coefficients of the powers of By in (3.8) produce the following system of equations:

N -
—sz :aiZkzlglﬂ 7’:17"';]\’7:

m; = —a:gi, Z:1~N~ (39)

a;:9; = —a;G:, 27,:]1 7’)]:1>N
Finally, from (3.9) we have

N
1
; = = s L =1...., N. 3.10
g QkX:;gk i=1,..., (3.10)

Eq. (3.10) can generally hold only for N = 2, which means that one can expect to be able to
balance the scheme (2.9) for stationary steady-state solutions only in cells that have two edges
that contribute to the flux in the z-direction. This obviously excludes most meshes. There are

two cases of special interest:
1. When the mesh is composed of triangles with one side that is parallel to the z-axis (see
Fig. 3.1), each cell has only two edges that contribute to the flux in the z-direction. In this
case the system (3.9) can be solved. This result will enable us to introduce in Section 3.2 a
modification of the scheme (2.9) that can be balanced on general meshes. Due to symmetry
considerations, such a mesh will not satisfy the balance conditions in the y-direction (that
come from the third equation in (1.1)) unless all triangles are right triangles that are aligned

with both coordinate axes.
2. The scheme can be balanced in both directions in the very special case of Cartesian grids.

This corresponds to the case previously solved in [12]. The results of [12] when viewed
from the point of view of the system (3.9) amount to the equality

B1(B1 — 2w) — Bao(By — 2w) = (2w — B; — By)(Ba — By).

Remark. If we assume a more general discretization of the cell average of the cell-average of
(3.1) of the form

N

N
gj == ng(w ~ By) Z i B (3.11)
k=1

k=1
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then the system (3.9) is replaced by (denoting 77, = mu/(2|75]))

—Q'fthZi\{___lgk’ak'k; k= 7"'7]\[)
M = —JkQkk, k=1,...,N, (3'12)
gka‘kk’ = _gk/a’k’k7 ,C # k/, k, k/ = 1, ey Af

Eq. (3.12) can be solved in the general case (unlike Eq. (3.9)). For example, in the case of &
triangular grid (N = 3) one possible solution (assuming m; # 0 and 73 + 2/, # 0) is

e m3+2m2 ™3
mi 1 Iy 21
= |, = ™2 — __2mp_ g
g me+ 3 a L —smims i | (3.13)
m
'51 1 1 -2

If m, = 0 the expression (3.13) can be replaced, e.g., by

0 0 Mafiiz 1

_ = | — 2ma L%
g={m2+ 3, a= |1 —55 5 Rl I (3.14)

s 1 1 -2

If s + 27y = 0 a permutation of the numbering of the sides of the triangle will provide a
solution. Other solutions of (3.12) exist.

While formally being able to balance the scheme with the expressions (3.13) and (3.14), it
remains unclear in what sense >, axw By approximates the derivative B;. In other words, it is
not obvious that the consistency of this discretization can be established. We therefore consider

this approach unsatisfactory.

3.2 A new well-balanced scheme

We focus on conformal triangular grids. Our ideas can be easily extended to other conformal
unstructured meshes. In order to create a balanced scheme for (1.1), we propose to decompose
every triangle T} into several triangles as explained below. This requires a different decomposition
for the two flux components. For the first component, f, we decompose Tj into two triangles,
each of which has an edge parallel to the z-axis. For the second component of the flux we split
T; into two other triangles, each of which has an edge parallel to the y-axis.

We denote the vertices of Tj as Vjz, k = 1,2, 3, and define the edges of T} as Ej; = Vjo — Vi,
Ejy = Vi3 —Vjy and E;3 = Vj; — V3. The midpoint of the k-th edge of Tj is Mjy. I (a,b) denotes
the closed interval with endpoints a and b. We also use Vj, (or Vji,) to denote the z (or y)
component of V. To simplify the treatment, we classify theé triangles into two categories as
portrayed in Fig. 3.2:

e Type 1: one vertex V;; bisects the opposite edge in the y direction: the y-component

Viiy € I (Viay, Vja,) and a different vertex Vj, bisects the opposite edge in the z direction:

View € I (Virz, Vise). (see Fig. 3.2 (left)).

o Type 2: The same vertex V;, bisects the opposite edge in both the z and y direction:
T ST 7o N s s A . M Q y
Vit € I (Vizg, Visy) 2nd Vin, € T{Vize, Vigz). (see Fig. 3.2 (right))
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Figure 3.2: The two types of triangles Left: Type 1. Right: Type 2.
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Figure 3.3: The triangle decomposition for the f-flux.

Note that these definitions specify our vertex numbering convention. The decomposition for
the g-flux will depend on the type of triangle.

3.2.1 The Decomposition in the z-Direction

For the ﬁux in the z-direction, we decompose T} into two triangles T’:’1 and sz,z (see Fig. 3.3).

Define V3 ' to be the intersection of edge Ej; with the line y = V}ly The vertices of T»x’1
are Vfll = Vi, V“ == Vj2, and V”l. The vertices of T are Vji© = 1/3131_, V;ﬁo = ng
and V]§2: i1 For both triangles T“ ‘the lengths of the sides are hJ o, the corresponding
midpoints are M =% the interior and exterior speeds of propagation are a}’}c““” * and the normals
are n]k = (nfk’x nii y) These deﬁmtlom imply M} = Mj, MI"Q = M3, ;" = hy1. hfg’z = hys,

h,- = hjo, n ,11 = Nj1g N3 = nff = N9z, nj; = nj3., and njgx = ngi = 0. For the
VeIOCIJCIeQ we have am out.z,1 am out a;nzou Tl ;,;ouz a;nlout z,2 — a}r‘Qout and a in, out.4,2 — m ot The
velocity a ’§°“ . does not Dla\' any role in the following computation since nj 1$ = nj’;z = 0.
Finally, the external reconstructions are denoted as uf;' = uj;, ufyh = uf? = up, and u? =g



10 S. BryYsoN AND D. LEVY

On each triangle Tf’?" we denote the cell-average of the component of the flux in the z-direction
by ®%. It is given by

2 T, zz
) 1 h W o . . ) e )
Pl = — § ke qgmed o (= (7)) 4 a2 F (uy (ME)] =1,2.
7 iTJzzi pat al]nkzz +a;‘]§z;z [a]k f (u]k ( ik )) ajk f (U’J ( ik ))] t

The cell-average of the r-component of the flux over the entire cell T} is taken to be the weighted

average
TI 1 TI,2
Wl B
Since S0 _, hjens, = 0 we have hi ! jllz = —h3; ' ;911 and if£2 ";fx = h362 flzx Hence, ®; can
be rewritten as
o, = _hjlnjl,x [ fmlt ‘Laout ]1 _ f( ( 1))+ a;"é‘f(u] (le))} (3.15)
!7’_‘7’ am + aout ]’2 + a;;t
 hyangae [0 f°“t Gl 5 anf (up (Pp)) + a3 (uy (sz»]
|T5] n o+ agy a® + agy ’

where Pj; = Mz and Pjp = M”.

Remark. We would like to note that the flux term (3.15) can be derived directly from (2.7) by

changing the quadrature points on E;, to P, and F.
We now verify that ®; given by (3.15) approximates — f, to second order.

Lemma 3.1 Assume a smooth reconstruction @*(z,y) in (2.4). Assume that the fluz is linear,
e., f(z,y) = axz+ by + ¢ with constant a and b. Then &; = —a.

Before proving Lemma 3.1 we consider the following geometrical lemma.

Lemma 3.2 With M and P defined as above (suppressing j),

7|
h2n2,z '

17|
h2n2,z

]\’Il,x - Pl,z = - s M3,x - P2,z = -

Proof. My = 1 (Vi + V3), and for some s, P, = V5 + s (V3 — V2). We require that Py, = M,
which implies that - "

s = lVLy ~ V2:y.
2V3y = Vay
Therefore
1. - B} 1V, — Vau 1E, x Es
Miz=Po=5 (Vi +Vao) = Voo — szt (Vae = Vau) = =55
z o Viy T V2y < 2y
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When the orientation of the vertices of Tj is clockwise, £ x Ey = —2|T| and

Tig = % (—Esy, E» ) while when the orientation is counter-clockwise Fy x E» = 2|T| and

Ny = % (EQ:y’ -EQ,.’E)7 Rle)

T
Ml,:r—Pl,:r:— ’ , .
hono o
Similar arguments hold for M. — P ...

Proof. (of Lemma 3.1) Since the reconstruction (2.4) was assumed to be smooth, we have

in _ , out in __ ,out J
uy, = ufy and therefore aj; = a3y’ In this case

_ himyg o _ hanss AN
®; = 7] (f (M) — f(Py)] 7] (f (M3) = f(P)],

where we use the notation f(P) = f(u;(P)). For the linear flux f(z,y) = az + by + ¢ we have

R hsng .
¢, = — 11;}' [QA{L:L +bM;, — (apl,z + bPl,y)] B _1%— [aMfiJ +bMs,y — (aPp + bPQ.y)J
| |
hinie hsngz
= —=a(Mi — Pra) - %0 (Ms, — Pr.)

T IT|

e ()] )

The second equality holds since M, = P, and Mz, = P, while the third-equality is due to
Lemma 3.2 and Y0_, hjpnge = 0.

3.2.2 The Decomposition in the y-Direction

Type 1 triangles. We decompose 7} into two triangles ij’l and TJy2 (see Fig. 3.4 (left)). The
intersection of the edge E;3 with the line z = Vjo, is denoted by V;yll The vertices of Tf'l are

V;}{’l, V;%l =V}, and D;.%’l := Vjo. The vertices of T}”Q are vertices Dﬁz = Vo, V;”’ZQ = Vs,
and ij32 = V4! As before, we have ]\lfg’l = M, A/[]yl’z = M, h?él = hj, hff = hja,
h?il + h;’f = h;3. The normals n;gl = nj, n]y-’l1 = n;’2 = n;s3, njff = n,o, n§’31y = ;{;fy = 0,
and the velocities aj;**¥"! = a3™, a3™¥! = aiy**, a}*Y? = a3™, a3™Y? = ™. The
velocity af3™**** does not appear in the result because n¥y, = §’32y = 0. Finally, the external

: vl _ vl __ v.2 _ v.2 __ .,
reconstructions are u;; = g, Ujy = Ujy, Ui = Uj, and Uy = Uj3.
We denote the cell-averages of the component of the flux in the y-direction on each triangle

T¥* by Ii. It is given by

2 iy
; 1 Rndy ini i i out,y.i i .
Uy i= =g D o o [0 0 (3 (M) + o™ (s (ME))], i=12
! il k=1 GE T G

The cell-average of the y-component of the flux over the entire cell T} is then given by the

weighted average

7% 7%
R A oY SR e A B n
F] T I_‘7' ! T rj‘

K sl
51 5]

-

i
!
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Figure 3.4: The triangle decomposition for the g-flux. Left: Type 1. Right: Type 2.

Cpwloyt gyl owl v.2,92 _ 392 ¥.2 . e
Clearly hjyniy = —hjini,, and hjiny, = —hjznjs,. Therefore I'; can be rewritten as
ir t t i i out . )
r. — _hjlnjl,y ajigit T aii’gn  aj;g (uss (PJB)) +ajzyg (u; (P ) (3.16)
T |75 ] aj +ad’ af + a%y ‘
J 3 j J
i t t o i t .
_hjanyoy [a}nzg}?‘zl +a3ygh a9 (ujs (Pja)) + asyg (u; (P ))}
i t i t ’
Tl | ap+an i+

where Pj3 = ]\ljyll and Pj4 = A{jyz’Q

Type 2 triangles. This case corresponds to Fig. 3.4 (right). Analogous computations to those
for Type 1 triangles provide the cell-average of the y-component of the flux over the cell T},

which this time is given by

r,—— hjinjiy {a}"lg;;t +a2tgf B a9 (uj2 (Pgs)) + agyg (uy (P ))] (3.17)
171 ajy + agy’ afy + agy
_histay [ ahgy tazgn  ahg (up (Fja)) +a55g (u; (5 ))J
i alfy + a3’ o, + a5y’ ’

where Pj3 and Pj4 are given in Fig. 3.4 (right).

3.2.3 The New Method (for conservation laws)

We would now like to combine all the different ingredients that we developed in the previous
section into one scheme. The scheme that we write here is still a scheme for approximating
solutions of the conservation law (2.2) without the source term. Based on our preliminary
analysis of Section 3.1 we know that we will be able to find an admissible discretization of the

sotrce terms that will result with a well-balanced scheme. We will treat the source terms in the
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We write two versions of the scheme based on the type of triangle. For type 1 triangles, the
discretization of the component of the flux in the z-direction, ®; is given by (3.15) while the
discretization of the component of the flux in the y-direction, I';, is given by (3.16). In this case

the scheme takes the form

@i — Jlnjlx _71 ]QZ‘L‘t out ]1 _ a:7n2f (ujZ( Jl)) +a 2 f u’] )
dt ’T ! ]1 + aout + aout
_ hansaa ’033113 +aiFla aRf (f;z)) +a55 f {(u; (Fj2))]
ITI out + aout
Jlnjly [ Jlg;‘llt O‘ithl _ a_‘;gg (ujs (PJS)) + aj3 9(uy j3))} (3.18)
751 |+ agy ap + gy
hjanjoy 29}’5“ + a35'g5 ARy (ujz (Pia)) + aig (us (Pja))
,T l _L aout 0,]3 + a;gt
axn aout
’T , Zh JK_J out l:u;‘it - u k]
[] Jk
Here P, = Vz—-— = fo, P = V§+%E;2’5E2, Py=V, + §E3
For type 2 tnangles we replace the discretization of I‘J by the one given in ( 3.17) endmg with
da; _ _hpnps [ AT e i S (up (le)) azs'f (u; (P ))]
dt |75 ap + a‘]"l’t b+ agy
_hysngs e I— 53+ agy J2f (ug2 (sz)) + a3t f (u; ( 12))-‘
Tl a;'a an @+ @y ]
Jlnjl y l' Jlgj‘llt + a}"{‘gﬂ aiang (UjE (P53)) + ass’g (u; (PJB))J (3.19)
IT l L am _{__ aout a}nQ _+_ aout
_hysngsy 9}"3" + 053’933 apg (uz2 (Pia)) + afhg (u; (Pia))
'T I -+ ou: aj]nZ + a;;t

out

]kajk o in
le Z Jka asyt [“fif - ujk] :

1'. 13 El:c — 1E3x
EE%EQ’PQ VE;-}-QEyEQ,Pg——LQ—— E’.—, andP4—V}, 2Eo E2

In this case P, = V5 —
Remark. A simple case of interest is that of coordinate-aligned right triangles. Such triangles
can be considered to be of type 1 with njo, = n;3, = 0 and P;; = M;s and Pj3 = M;3. which
means that the method becomes (taking into account that > ;_, hjkn;e = 0)

~ out out out out
du; 1 [aafp+af ]lh , a5 ]lh
d T oy e +a°“‘ PR
aﬂ e aﬂ a]2
out out out out
1 _719_71 lgjlh . ]39]3 +a‘]3 g]lh 3 20\
'_—}T-] 5+ aor i1y T o & am VELGERT (3.20)
2 73 73
3

in out
h ajq'”a“v h,uout _ uip-i
E : J}‘nm RN ,,out ’\ ik JK1

k=1 ik =7

|‘-—l

=
a,
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As expected, in this case the method (3.20) coincides with the KP method (2.8).

3.2.4 Adding the Source Term

We return to the shallow water equations (1.1). Our goal is now to find an admissible discretiza-
tion of the cell-average of the source terms that will preserve stationary steady states. Such a
term will be added to the RHS of (3.18) or (3.19) depending on the type of the triangle. In
the following we assume Type I triangies. Similar analysis holds for Type 2 triangies. We also
note that the first equation in the system (1.1) is homogeneous. This means that we only have
to consider the remaining two equations when dealing with the source terms. We recall from
Section 3.1 that in stationary steady states all the velocities are equal, a}} = afi' = aj. Our

new method (3.18) for the last two equations of (1.1) then becomes

0 _ HZT%!_( (w<Mﬂ>~OB<M]-1>>2>_(<w<Pﬂ - )J
tanse ( <w<MJ-3>BB<M]-3>>2)_<< w(Pr) mfﬂ (3.21)
_Q’MLTT ( (w (M;y) —0 B(M;))? ) - ( (w (Pys) — ) }
“%QT%:(WWJ-Q)—OMM]Q»Z>‘(<w<PJ4 B(Pye))? ﬂ*( )

The last term in (3.21) represents the average of the source, ie., 5’; = avg(—(w — B)B,) and
S? = avg(—(w — B)B,), where both averages are taken over Tj.

We use (3.21) to determine the admissible discretizations of the cell-averages of the source
terms. For constant w the source terms (given by (3.21)) can be rewritten as

_ hiiMite
5} = —%fj—l[—[w — By, +wpy, — Bp,,][Bag,, — Bp,.]
hisna x
_ 8T8 [ Wity 31\43 + wp BP_,-QMBM]G - BPjg}, (322)
2|3

=9 hjlnju’,
Sj = —————~2lT I ['LUM BM .+ Wpy; — Bp. 3][BMJ1 BPja]

—h]gn]z:y

[wsz - BMjQ + Wpy, — BPj4][BM;'2 - BPjAJ'

2|T5]
Here, we use the notation wyy, := w (M), etc. We take the expressions in (3.22) as the dis-

cretization of the source even when w is not constant. Similar expressions can be easily written
for Type 2 triangles.

Lemma 3.3 The source discretizations S’ giwen by (3.22) are consistent approzimations of the
source terms in (1.1), and lead to detazled balance in the stationary steady-state case (3.21).

Proof. We show that 5’} ~ avg(—(w — B)BA To simplify the notations we suppress the index
Fr - T emma 29 wa bnaw that A7, — P, — ’T, q]nﬁp A/[1 v = Pl&, we ha\/’e

~
vilr L CHIING S.2 wo RIICW LIlat A .
E = ko
i, 1.z Ao
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%}% =B, +O (|M, — P1[2) at the midpoint between M; and P,. Hence the first part of S}

in (3.22) becomes

BM1 _Bpl ~ hlnl,x

hini .
= — By, +wp, — B ~
(war, My T WP 7) My, — P, 2hny,

2h2n2,x

('le - BMI +wp, — BPI) Bl"

Applying a similar argument to the second term of S 1 in (3.22) gives

= 1 h n hsn T

Sl ~ = ( Sl (’le - BIW1 +wp, — BPx) -+ hznz (,wMz - B]\Jz T wWp, — BPZ)) Bl" (323)
Clearly, the coefficient of B, in (3.23) is a discretization of a weighted average of —(w — B).
For example, when w — B is constant we have

- hlnl.; T hgng

by 22708 T TR -B)B,=—(w— -
3 h2n2’x (w ) (u’ B)B

Similar arguments hold for 7.

4 Numerical Examples

The scheme developed in Section 3.2 did not assume any particular reconstruction. There are
several different second-order reconstructions on triangular meshes that are being used in the
literature (see [14] and the references therein). We briefly describe the one we used in our
simulations.

The starting point is the limited least-squares estimate of the gradients as done in [2]. The
first step is to compute a least-squares estimate of the gradient of a field f on the triangle T3,
V;f. We then limit the gradient D, f component by component as

D, f = MM (@jf, Viif, Vjsf, f7j3f) ;

where f7jk f is the least-squares gradient estimate on T}, and MM stands for the usual MinMod
limiter
I’IliIlj {.’Z‘]} ) if z> 0, ‘v’],
MM (I],.’I‘,Q"...) = max; {.'E]‘}, if z; < O,Vj,
0, otherwise.
We use the gradients D; to construct a piecewise linear reconstruction for the point-values of

each triangle edge Ej; as
w; () = @, + MM (D,u- (F — &), Dy~ (£ — Z5)).-

Here Dju is the limited gradient estimate on Tk, Z; is the center of T; and 7 € Ej;. We find

that this double use of the MinMod limiter minimizes spurious oscillations while preserving the

second-order accuracy of the reconstruction.



16 S. BRYSON AND D. LEVY

Figure 4.1: The two types of triangle meshes. Left: Uniform triangulation. Right: Perturbed

triangulation.

We use an adaptive time step given by

At = O.9min—-ﬁ—,
]

where r; is the radius of 7; and [AM is the norm of the largest eigenvalues of the Jacobian of
the flux on Tj.

We use two types of meshes in most of our simulations. The first is a uniform triangulation
of a Cartesian mesh with N x N nodes and constant spacings Az and Ay, which divides each
Cartesian cell into four triangles. To test our method on more general meshes, our second type
of mesh is generated from a uniform triangular mesh with a perturbation of the coordinates of
the interior vertices. Examples of both meshes are shown in Fig. 4.1. The only exception is
Example 6, which uses a uniform triangulation of a warped Cartesian mesh.

Example 1: accuracy tests for a 2D linear advection equation

We test the accuracy of our method (3.18)~(3.19) when applied to the two-dimensional linear
advection problem

utuy,+u, =0, (z,y)€l0,1]? 1)

u(z,y,t=0) =sin(27z) + cos(27y),

with periodic boundary conditions. The relative L'-error (i.e. the L'-error divided by the L'-
solution) at 7 = 1 is shown in Table 4.1 for both uniform and perturbed

L
demo atine the second-order accuracy of our methad.

Faet oy
uuuou;uuu;b oS SECOT ACccurac Ul

morrla
criang U1atior

norm of uh ex
ns,
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Uniform Triangulation Perturbed Triangulation
N || relative L1-error | L -order || relative L*-error | L1-order
10 0.123 - 0.129 -
20 0.029 2.09 0.034 1.94
40 6.52 x 1072 2.15 8.68 x 1073 1.95
80 1.73 x 1073 1.91 3.02 x 1073 1.52

Table 4.1: L*-error and convergence rates for the advection equation (4.1) at 7 = 1 on a uniform
and a perturbed triangulation of an N x N Cartesian mesh.

Example 2: accuracy tests for a 2D Burgers equation
We continue by checking the accuracy of our method (3.18)—(3.19) on non-linear problems by
applying it to the two-dimensional Burgers equation

us + % (u?), + % (uz)y =0, [—27, 27r]2,

(4.2)
u(z,y,t=0)=sin (Z¥),
with periodic boundary conditions. The L-error of our method at T = 0.5 is shown in Table 4.2

for uniform and perturbed triangulations. The computed cell-averages after singularity formation
at T'= 1.5 are shown in Fig. 4.2. Note the sharp shocks that are captured by our method.

Uniform Triangulation Perturbed Triangulation
| N | relative L'-error [ L1-order || relative L'-error | L'-order
10 0.064 - 0.064 -
20 0.014 2.20 0.014 2.20
40| 4.68x10~° 1.58 4.65 x 1073 1.59
| 80 1.37 x 1073 1.77 1.36 x 1073 1.77

Table 4.2: L'-error and convergence rates for Burgers equation (4.2) at 7 = 0.5 on a uniform
and a perturbed triangulation of an N x N Cartesian mesh.

Example 3: accuracy tests for 2D systems

To test our method (3.18)—(3.19) on a system of equations we apply it to the Sod problem for
the Euler equations

p pu pv
9
U u” - , v )
p” + P p + ngu] = 0. (4.3)
o3 ouv pvT = p
N £/, \ul(E+p) [ ?J(E.Lp)/y
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Figure 4.2: Burgers equation at T = 1.5 on a uniform triangulation of a 20 x 20 Cartesian mesh.
Left: oblique view. Right: side view.

Here p is the density, (u,v) is the velocity, and F is the energy. The equation of state for the
pressureisp = (y— 1) [E — £ (v + v?)]. We set v = 1.4 and take the initial conditions (constant

in the y-direction)

[ (1.0,1.0,0.0,0.0), <05, »
(p’p’”’”)'{ (0.1,0.125,0.0,0.0), z > 0.5. (4.4)

Figure 4.3 shows the computed cell-averages at 7' = 0.16 using our method from Section 3.2
projected onto the ¥ = 0 plane. A reference one-dimensional solution is also shown. The two-
dimensional problem uses a uniform triangulation based on a 300 x 30 Cartesian mesh on the
domain [0, 1]x[0,0.1]. The one-dimensional reference solution is computed using the second-order
central method of [13] with 3000 points in the domain [0, 1]. '

Example 4: a balance test

In this example we demonstrate the well-balanced property of our scheme (3.18)—(3.19) with the
source discretization (3.22).
~As a simple test of balance, we consider the shallow water problem with initial condi-
tions that represent a stationary steady-state. We choose w(z,v,t =0) = 2, u(z,y,t =0) =
v (z,y,t = 0) = 0 and a bottom topography given by B (z,y) = sin(27z) + cos(2ry) on the do-
main [0, 1]?>. We assume periodic boundary conditions. This initial value problem has the trivial
stationary steady state solution w (z,y,t) = 2, u (z,y,t) = v(z,y,t) = 0 for all ¢.
The relative L'-errors at 7 = 1 on both uniform and perturbed triangulations based on a
10 x 10 Cartesian mesh are given in Table 4.3. This table also shows the result found using the
KP method [14] with the same source discretization (3.22) which is not balanced for this scheme.

We gee that our method balances to machine accuracy.

H

w
4}
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O 2D triangular simulation
— 1D reference simulation

—

pressure

Figure 4.3: The pressure (left) and u-velocity (right) fields of the Sod problem at 7'= 0.16 on a
uniform triangulation. The circles show a projection onto the y = 0 plane of the solution of the

2D problem on a triangular mesh. The line shows a 1D reference solution computed with the
second-order central-upwind method of [13].

( Method ” Uniform Triangulation || Perturbed Tm’angulatz'onﬂ
(3.18)—(3.19)—-(3.22) 3.5 x 10717 6.9 x 10719
(14 (822)-. - o 30ox107% - 3.5 %1073 . ..

Table 4.3: The relative L'-error in the balance for (3.18)—(3.19)—(3.22) and for the KP scheme
with the source discretization (3.22
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Example 5: propagating waves with a bottom topography

We apply our method to a test problem from [16] of a small perturbation of a steady state
problem on the domain [0,2] x [0,1] with periodic boundary conditions in y-direction. The
bottom topography is the elliptical Gaussian mound given by

B(z,y) = 0.8exp (=5 (z — 0.9)° — 50 (y — 0.5)%) ,

and the initial conditions are

(10,0,0) = (1.01,0.0,0.0), if 0.05 <z < 0.15,
%Y= (1.0,0.0,0.0),  otherwise.

Fig. 4.4 shows the result of our method at various times on a uniform triangulation of both a
200 x 100 and 400 x 200 Cartesian mesh. These results are in good agreement with other methods

on Cartesian grids (see [12, 16]).

Example 6: converging-diverging channel with bottom topography

Our final example is that of a converging-diverging channel with critical flow adapted from [10].
The channel is defined on the domain [0, 3] x [-0.5,0.5] with a half-cosine constriction centered
at x = 1.5. The mesh for this example is shown in Fig. 4.5 (a). It is a uniform triangularization
of the warped Cartesian mesh defined by the mapping (z,y) — (=, (1 — 0.2 cos? (7 (z — 1.5))) v)
when |z — 1.5 < 0.5. The initial data is w = 1,u = v = 0. The y-boundaries are reflecting. The
left z-boundary is an inflow boundary with u = 5.0 and the right z-boundary is a zeroth-order
outflow boundary. We run the simulations on a 90 x 30 mesh until T'= 7 after the steady state

is achieved.
We first present this example with a flat bottom, with contours of w shown in Fig. 4.5 (b).

Fig. 4.5 (c) shows the same channel at the same time with bottom topography
B (z,y) = 0.8 (exp (=10 (z — 1.9)* — 50 (y — 0.2)°) + exp (=20 (z — 2.2)* — 50 (y + 0.2)7)) .

This topography is shown in Fig. 4.5 (d) and represents two elliptical Gaussian mounds just
down-flow from the constriction.
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larization based on a 200 x 100 mesh. Right: uniform triangularization based on a 400 x 200

mesh.



S. BRYSON AND D. LEVY

N
\N]

RRRARSIRSITTS
oo

0.5 pRe

[ZoZoTozomniozozots

0% »4»;:_«.,.. oo
ot

HS0I0ZOX
ML o
20

2
oZoSSS

20

EBICKICLARS
of o:o:«:o:o:«:«:«:
1JODI0Z0 T 0T0 0T
o

IR S

2026
b

RS e s o
RICISIIIIIRS RIS, <>_<>= b.o.voc O
2 R RIS I

5 P00k 00
SoRsSelleoluleool
s

T
b
Dol
K

X

oS
2

0

z

e
S
X
e

0%

2
2
B
5

d'o'« 00; »' 'o
BRI

=
b
R

12

R

XXX

05 T T

o
T

05 1

05 T T

0.5 1

05 ~T T

0.5 1

Figure 4.5: Example 6: (a) The mesh. (b) Contours of w for a critical flow through a converging-
diverging channel with flat bottom at T = 7. (c) Contours of w for a critical flow through a
converging-diverging channel with the topography shown below at T = 7. (d) The bottom
topography for figure (c).




BALANCED SCHEMES FOR THE SHALLOW WATER EQUATIONS 23

[4] Audusse E., Bristeau M.-O., Perthame B., Kinetic schemes for Saint- Venant equations with
source terms on unstructured grids, INRIA Report RR-3989, (2000).

[5] Delis Al, Katsaounis Th., Relazation schemes for the shallow water equations, Int. J.
Numer. Meth. Fluids, 41 (2003), pp.695-719.

[6] Friedrichs K. O., Lax P. D , Systems of Conservation equations with a conver extension,
12082 OO

Pran Na+ Aru\r] [P oo Q71N e
£ T8, Nau. /ilad. ol 3 WO \-L-Jl J./’ Pp-rvouT J..U

[7] Gallouét T., Hérard J.-M., Seguin N., Some approzimate Godunov schemes to compute
shallow- water equations wzth topography, Comput. Fluids., 32 (2003), pp.479-513.

[8] Gerbeau J.F., Perthame B., Derivation of viscous Saint- Venant system for laminar shallow
water; numerical validation, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), pp.89-102.

[9] Gosse L., A well-balanced scheme using non-conservative products designed for hyperbolic
systems of conservation laws with source terms, Math. Models Methods Appl. Sci., 11

(2001), pp.339-365.

(10] Hubbard, M. E., On the Accuracy of One-Dimensional Models of Steady Converg-
ing/Diverging Open Channel Flows, Int. J. Numer. Meth. Fluids, 35 (2001), pp.785-808.

[11) Jiang G.-S., Tadmor E., Nonoscillatory central schemes for multidimenstonal hyperbolic
conservation laws, SIAM J. Sci. Comp., 19 (1998), pp.1892-1917.

Kurganov A., Levy D., Central-upwind schemes for the Saint-Venant system, \Iath Model.
and Numer. Anal., 36 (’)OO’)), pp.397-425.

[13] Kurganov A., Noelle S., Petrova G., Semi-discrete central-upwind schemes for hyperbolic
conservation laws and Hamilton-Jacobi equations, STAM J. Sci. Comp., 23 (2001), pp.707—

740.

[14] Kurganov A., Petrova G., Central-upwind schemes on unstructured grids for hyperbolic sys-
tems of conservation laws, 2003, submitted.

[15] Kurganov A., Tadmor E., New high-resolution central schemes for nonlinear conservation
laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), pp.214-282.

[16] LeVeque R.J, Balancing source terms and flur gradients in high-resolution Godunov methods:

the quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), pp.346-365.

[17) LeVeque R.J., Bale D.S., Wave propagation methods for conservation laws with source terms,
Hyperbolic Problems: Theory, Numerics, Applications, Vol. 11 (Zirich, 1998), pp.609-618,

Internat. Ser. Numer. Math., 130, Birkh&user, Basel, 1999.

[18] Liotta S.F., Romano V., Russo G., Central schemes for systems of balance laws, Hyperbolic
Problems: Thﬂor\ Numerics, ALpphcamor‘s Vol. II (Zirich, 1998), pp.651-660, Internat.
Ser, Numer. Ma.th;; 130, Birkhiuser, Rasel, 1999,




24 S. BrRYSON AND D. LEVY

[19] Nessyahu H., Tadmor E., Non-oscillatory central differencing for hyperbolic conservation
laws, J. Comput. Phys., 87 (1990), pp.408-463.

[20] Perthame B., Simeoni C., A kinetic scheme for the Saint-Venant system with a source term,
Calcolo, 38 (2001), pp.201-231.

[21] Russo G., Central schemes for balance laws, Hyperbolic problems: theory, numerics, appli-
cations, Vol I, IT (Magdeburg, 2000), pp.821-829, Internat. Ser. Numer. Math., 140, 141,

Birkh&user, Basel, 2001.

[22] de Saint-Venant A.J.C., Théorie du mouvement non-permanent des eaur, avec application
auz crues des riviere at & 'introduction des marées dans leur lit, C.R. Acad. Sci. Paris, 73

(1871), pp.147-154.




